Silk from Crickets: A New Twist on Spinning
نویسندگان
چکیده
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.
منابع مشابه
The Development of a Passive False Twister Mechanism in Handling Low Strength Cotton Slivers on High Draft Spinning Machine
A passive false twist unit (spiral) has been developed to assist with the handling lowstrength slivers on a high speed-spinning machine with a high-speed feed. In the first trial, a falsetwist simulator device was constructed to determine whether the passive false twist unit can be usedon high speed feeding with different can distance from the feeding device. In the second trial, theeffects of ...
متن کاملThe common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy cric...
متن کاملA New Evidence of Lubrication Hypothesis on Nephila pilipes Spider Silk Spinning
In spite of all the efforts on deciphering such spinning process of spiders, the underlying mechanism currently is yet to be fully revealed. In this research, we designed a novel approach to quantitatively estimate the overall concentration change of spider silk along the progression of liquid-to-solid silk transition from the gland silk. As a prior characterization, we first studied the influe...
متن کاملPrey type, vibrations and handling interactively influence spider silk expression.
The chemical and mechanical properties of spider major ampullate (MA) silks vary in response to different prey, mostly via differential expression of two genes - MaSp1 and MaSp2 - although the spinning process exerts additional influence over the mechanical properties of silk. The prey cues that initiate differential gene expression are unknown. Prey nutrients, vibratory stimuli and handling ha...
متن کاملPlasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology
Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider e...
متن کامل